Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Nat Commun ; 12(1): 7276, 2021 12 14.
Article in English | MEDLINE | ID: covidwho-1575708

ABSTRACT

Double membrane vesicles (DMVs) serve as replication organelles of plus-strand RNA viruses such as hepatitis C virus (HCV) and SARS-CoV-2. Viral DMVs are morphologically analogous to DMVs formed during autophagy, but lipids driving their biogenesis are largely unknown. Here we show that production of the lipid phosphatidic acid (PA) by acylglycerolphosphate acyltransferase (AGPAT) 1 and 2 in the ER is important for DMV biogenesis in viral replication and autophagy. Using DMVs in HCV-replicating cells as model, we found that AGPATs are recruited to and critically contribute to HCV and SARS-CoV-2 replication and proper DMV formation. An intracellular PA sensor accumulated at viral DMV formation sites, consistent with elevated levels of PA in fractions of purified DMVs analyzed by lipidomics. Apart from AGPATs, PA is generated by alternative pathways and their pharmacological inhibition also impaired HCV and SARS-CoV-2 replication as well as formation of autophagosome-like DMVs. These data identify PA as host cell lipid involved in proper replication organelle formation by HCV and SARS-CoV-2, two phylogenetically disparate viruses causing very different diseases, i.e. chronic liver disease and COVID-19, respectively. Host-targeting therapy aiming at PA synthesis pathways might be suitable to attenuate replication of these viruses.


Subject(s)
Hepacivirus/genetics , Phosphatidic Acids/metabolism , SARS-CoV-2/genetics , Virus Replication/physiology , 1-Acylglycerol-3-Phosphate O-Acyltransferase , Acyltransferases , Autophagosomes/metabolism , Autophagy , COVID-19/virology , Cell Line , Cell Survival , Dengue Virus , HEK293 Cells , Humans , Membrane Proteins , Spike Glycoprotein, Coronavirus , Viral Nonstructural Proteins , Viral Proteins , Zika Virus
2.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Article in English | MEDLINE | ID: covidwho-1550424

ABSTRACT

The within-host viral kinetics of SARS-CoV-2 infection and how they relate to a person's infectiousness are not well understood. This limits our ability to quantify the impact of interventions on viral transmission. Here, we develop viral dynamic models of SARS-CoV-2 infection and fit them to data to estimate key within-host parameters such as the infected cell half-life and the within-host reproductive number. We then develop a model linking viral load (VL) to infectiousness and show a person's infectiousness increases sublinearly with VL and that the logarithm of the VL in the upper respiratory tract is a better surrogate of infectiousness than the VL itself. Using data on VL and the predicted infectiousness, we further incorporated data on antigen and RT-PCR tests and compared their usefulness in detecting infection and preventing transmission. We found that RT-PCR tests perform better than antigen tests assuming equal testing frequency; however, more frequent antigen testing may perform equally well with RT-PCR tests at a lower cost but with many more false-negative tests. Overall, our models provide a quantitative framework for inferring the impact of therapeutics and vaccines that lower VL on the infectiousness of individuals and for evaluating rapid testing strategies.


Subject(s)
COVID-19/diagnosis , SARS-CoV-2/genetics , COVID-19/virology , COVID-19 Nucleic Acid Testing/methods , False Positive Reactions , Humans , Kinetics , Serologic Tests/methods
SELECTION OF CITATIONS
SEARCH DETAIL